Pengenalan UML (Unified Modeling Language)


Sejarah UML

 

  Bahasa pemrograman berorientasi objek yang pertama dikembangkan dikenal dengan nama Simula-67 yang dikembangkan pada tahun 1967. Bahasa pemrograman ini kurang berkembang dan dikembangkan lebih lanjut, namun dengan kemunculannya telah memberikan sumbangan yang besar pada developer pengembang bahasa pemrograman berorientasi objek selanjutnya.

  Perkembangan aktif dari pemrograman berorientasi objek mulai menggeliat ketika berkembangnya bahasa pemrograman Smalltalk pada awal 1980-an yang kemudian diikuti dengan perkembangan bahasa pemrograman beorientasi objek yang lainnya seperti C objek, C++, Eiffel, dan CLOS. Secara aktual, penggunaan bahasa pemrograman berorientasi objek pada saat itu masih terbatas, namun telah banyak menarik perhatian di saat itu. Sekitar lima tahun setelah Smalltalk berkembang, maka berkembang pula metode pengembangan berorientasi objek. Metode yang pertama diperkenalkan oleh Sally Shlaer dan Stephen Mellor (Shlaer-Mellor, 1988) dan Peter Coad dan Edward Yourdon (Coad-Yourdon, 1991), diikuti oleh Grady Booch (Booch, 1991), James R. Rumbaugh, Michael R. Blaha, William Lorensen, Frederick Eddy, William Premerlani (Rumbaugh-Blaha-Premerlani-Eddy-Lorensen, 1991), dan masih banyak lagi. Buku terkenal yang juga berkembang selanjutnya adalah karangan Ivar Jacobson (Jacobson, 1992) yang menerangkan perbedaan pendekatan yang fokus pada use case dan proses pengembangan. Sekitar lima tahun kemudian muncul buku yang membahas mengenai metodologi berorientasi objek yang diikuti dengan buku-buku yang lainnya. Di dalamnya juga membahas mengenai konsep, definisi, notasi, terminologi, dan proses mengenai metodologi berorientasi objek.

   Karena banyaknya metodologi-metodologi yang berkembang pesat saat itu, maka muncullah ide untuk membuat sebuah bahasa yang dapat dimengerti semua orang. Usaha penyatuan ini banyak mengambil dari metodologi-metodologi yang berkembang saat itu. Maka dibuat bahasa yang merupakan gabungan dari beberapa konsep seperti konsep Object Modelling Technique (OMT) dari Rumbaugh dan Booch (1991), konsep The Classes, Responsibilities, Collaborators (CRC) dari Rebecca Wirfs-Brock (1990), konsep pemikiran Ivar Jacobson, dan beberapa konsep lainnya dimana James R. Rumbaigh, Grady Booch, dan Ivar Jacobson bergabung dalam sebuah perusahaan yang bernama Rational Software Corporation menghasilkan bahasa yang disebut dengan Unified Modeling Language (UML). Pada 1996, Object Management Group (OMG) mengajukan proposal agar adanya standardisasi pemodelan berorientasi objek dan pada bulan September 1997 UML diakomodasi oleh OMG sehingga sampai saat ini UML telah memberikan kontribusinya yang cukup besar di dalam metodologi berorientasi objek dan hal-hal yang terkait di dalamnya.

Pengenalan UML


  UML (Unified Modelling Language) adalah salah satu alat bantu yang sangat handal di dunia pengembangan sistem yang berorientasi objek.UML merupakan kesatuan dari bahasa pemodelan yang dikembangkan oleh Booch,Object Modelling Technique (OMT) dan Object Oriented Software Engineering (OOSE).Metode Booch dari Grady Booch sangat terkenal dengan nama metode Design Object Oriented.Metode ini menjadikan proses analisis dan design ke dalam empat tahapan iteratif,yaitu: identifikasi kelas-kelas dan objek-objek,identifikasi semantik dari hubungan objek dan kelas tersebut,perincian interface dan implementasi.Keunggulan metode Booch adalah pada detil dan kayanya dengan notasi dan elemen.

Gambar berikut adalah unsur-unsur yang membentuk UML.

Gambar unsur-unsur pembentukan UML

Mengapa UML Penting 


  UML adalah hasil kerja dari konsursium berbagai organisasi yang berhasil dijadikan sebagai standar baku dalam OOAD (Object Oriented Analysis & Design).Kontribusi untuk UML telah dihasilkan dari banyak perusahaan-perusahaan ternama diantaranya Digital Equipment Corp, Hewlet-Packard Company, i-Logic, Intellicorp, IBM, IconComputing, Electronic Data Services Corporation, MCI System House, Microsoft, Orecle, Rational Software, TI, Sterling Software, Taskon A/S, Unisys Platinum Technologies, Ptech, Taskon & Reich Technologies dan Softeam.




  UML tidak hanya dominan dalam penotasian di lingkungan OO tetapi juga populer di luar lingkungan OO.Paling tidak ada tiga karakter penting yang melekat di UML yaitu sketsa,cetak biru dan bahasa pemrograman.Sebagai sebuah sketsa,UML bisa berfungsi sebagai jembatan dalam mengkomunikasikan beberapa aspek dari sistem.UML bisa juga berfungsi sebagai sebuah cetak biru karena sangat lengkap dan detil.Sebagai bahasa pemrograman,UML dapat menterjemahkan diagram yang ada di UML menjadi code program yang siap untuk dijalankan.UML dibangun atas model 4+1 view.Model ini didasarkan pada fakta bahwa struktur sebuah sistem dideskripsikan dalam 5 view dimana salah satu diantaranya use case view.Use case view ini memegang peran khusus untuk mengintegrasikan content ke view yang lain.

Gambar Model 4+1 view

  Kelima view tersebut tidak berhubungan dengan diagram yang dideskripsikan di UML.Setiap view berhubungan dengan perspektif tertentu dimana sistem akan diuji.View yang berbeda akan menekankan pada aspek yang berbeda dari sistem yang mewakili ketertarikan sekelompok stakeholder tertentu.Penjelasan lengkap tentang sistem bisa dibentuk dengan menggabungkan informasi-informasi yang ada pada kelima view tersebut.

  Use case view mendefinisikan kebutuhan sistem karena mengandung semua view yang lain yang mendeskripsikan aspek-aspek tertentu dari rancangan sistem.Itulah sebabnya use case view menjadi pusat peran dan sering dikatakan yang mendrive proses pengembangan perangkat lunak.

  Design view ini berisi definisi komponen program,class-class utama bersama-sama dengan spesifikasi data,perilaku dan interaksinya.Informasi yang terkandung di view ini menjadi perhatian para programmer karena menjelaskan secara detil bagaimana fungsionalitas sistem akan diimplementasikan.

  Implementation view menjelaskan komponen-komponen fisik dari sistem yang akan dibangun.Hal ini berbeda dengan komponen logic yang dideskripsikan pada design view.Termasuk di sini diantaranya file exe,library dan database.Informasi yang ada di view ini relefan dengan aktifitas-aktifitas seperti manajemen konfigurasi dan integrasi sistem.

  Proses view berhubungan dengan hal-hal yang berkaitan dengan concurrency di dalam sistem.Sedangkan deployment view menjelaskan bagaimana komponen-komponen fisik didistribusikan ke linkungan fisik seperti jaringan komputer dimana sistem akan dijalankan.Kedua view ini menunjukkan kebutuhan non fungsional dari sistem seperti toleransi kesalahan dan hal-hal yang berhubungan dengan kinerja.

Jenis-jenis Diagram UML :


A. Use Case Diagram


Use case diagram menggambarkan fungsionalitas yang diharapkan dari sebuah sistem. Yang ditekankan adalah “apa” yang diperbuat sistem, dan bukan “bagaimana”. Sebuah use case merepresentasikan sebuah interaksi antara aktor dengan sistem. Use case merupakan sebuah pekerjaan tertentu, misalnya login ke sistem, meng- create sebuah daftar belanja, dan sebagainya. Seorang/sebuah aktor adalah sebuah entitas manusia atau mesin yang berinteraksi dengan sistem untuk melakukan pekerjaan-pekerjaan tertentu. Use case diagram dapat sangat membantu bila kita sedang menyusun requirement sebuah sistem, mengkomunikasikan rancangan dengan klien, dan merancang test case untuk semua feature yang ada pada sistem. Sebuah use case dapat meng- include fungsionalitas use case lain sebagai bagian dari proses dalam dirinya. Secara umum diasumsikan bahwa use case yang di- include akan dipanggil setiap kali use case yang meng- include dieksekusi secara normal. Sebuah use case dapat di- include oleh lebih dari satu use case lain, sehingga duplikasi fungsionalitas dapat dihindari dengan cara menarik keluar fungsionalitas yang common . Sebuah use case juga dapat meng- extend use case lain dengan behaviour -nya sendiri. Sementara hubungan generalisasi antar use case menunjukkan bahwa use case yang satu merupakan spesialisasi dari yang lain.

B. Class Diagram


Class adalah sebuah spesifikasi yang jika diinstansiasi akan menghasilkan sebuah objek dan merupakan inti dari pengembangan dan desain berorientasi objek. Class menggambarkan keadaan (atribut/properti) suatu sistem, sekaligus menawarkan layanan untuk memanipulasi keadaan tersebut (metoda/fungsi). Class diagram menggambarkan struktur dan deskripsi class, package dan objek beserta hubungan satu sama lain seperti containment , pewarisan, asosiasi, dan lain-lain.

Class memiliki tiga area pokok :

1. Nama (dan stereotype)

2. Atribut

3. Metoda

Atribut dan metoda dapat memiliki salah satu sifat berikut :
  • Private , tidak dapat dipanggil dari luar class yang bersangkutan
  • Protected , hanya dapat dipanggil oleh class yang bersangkutan dan anak-anak yang mewarisinya
  • Public , dapat dipanggil oleh siapa saja

Class dapat merupakan implementasi dari sebuah interface , yaitu class abstrak yang hanya memiliki metoda. Interface tidak dapat langsung diinstansiasikan, tetapi harus diimplementasikan dahulu menjadi sebuah class. Dengan demikian interface mendukung resolusi metoda pada saat run-time .

Sesuai dengan perkembangan class model, class dapat dikelompokkan menjadi package . Kita juga dapat membuat diagram yang terdiri atas package.

Hubungan Antar Class

  1. Asosiasi, yaitu hubungan statis antar class . Umumnya menggambarkan class yang memiliki atribut berupa class lain, atau class yang harus mengetahui eksistensi class lain. Panah navigability m enunjukkan arah query antar class .
  2. Agregasi, yaitu hubungan yang menyatakan bagian (“terdiri atas..”).
  3. Pewarisan, yaitu hubungan hirarkis antar class . Class dapat diturunkan dari class lain dan mewarisi semua atribut dan metoda class asalnya dan menambahkan fungsionalitas baru, sehingga ia disebut anak dari class yang diwarisinya. Kebalikan dari pewarisan adalah generalisasi.
  4. Hubungan dinamis, yaitu rangkaian pesan ( message ) yang di- passing dari satu class kepada class lain. Hubungan dinamis dapat digambarkan dengan menggunakan sequence diagram yang akan dijelaskan kemudian.

C. Statechart Diagram


Statechart diagram menggambarkan transisi dan perubahan keadaan (dari satu state ke state lainnya) suatu objek pada sistem sebagai akibat dari stimuli yang diterima. Pada umumnya statechart diagram menggambarkan class tertentu (satu class dapat memiliki lebih dari satu statechart diagram ). Dalam UML, state digambarkan berbentuk segiempat dengan sudut membulat dan memiliki nama sesuai kondisinya saat itu. Transisi antar state umumnya memiliki kondisi guard yang merupakan syarat terjadinya transisi yang bersangkutan, dituliskan dalam kurung siku. Action yang dilakukan sebagai akibat dari event tertentu dituliskan dengan diawali garis miring. Titik awal dan akhir digambarkan berbentuk lingkaran berwarna penuh dan berwarna setengah.

D. Activity Diagram


Activity diagrams menggambarkan berbagai alir aktivitas dalam sistem yang sedang dirancang, bagaimana masing-masing alir berawal, decision yang mungkin terjadi, dan bagaimana mereka berakhir. Activity diagram juga dapat menggambarkan proses paralel yang mungkin terjadi pada beberapa eksekusi. Activity diagram merupakan state diagram khusus, di mana sebagian besar state adalah action dan sebagian besar transisi di- trigger oleh selesainya state sebelumnya ( internal processing ). Oleh karena itu activity diagram tidak menggambarkan behaviour internal sebuah sistem (dan interaksi antar subsistem) secara eksak, tetapi lebih menggambarkan proses-proses dan jalur-jalur aktivitas dari level atas secara umum. Sebuah aktivitas dapat direalisasikan oleh satu use case atau lebih. Aktivitas menggambarkan proses yang berjalan, sementara use case menggambarkan bagaimana aktor menggunakan sistem untuk melakukan aktivitas. Sama seperti state , standar UML menggunakan segiempat dengan sudut membulat untuk menggambarkan aktivitas. Decision digunakan untuk menggambarkan behaviour pada kondisi tertentu. Untuk mengilustrasikan proses-proses paralel ( fork dan join ) digunakan titik sinkronisasi yang dapat berupa titik, garis horizontal atau vertikal. Activity diagram dapat dibagi menjadi beberapa object swimlane untuk menggambarkan objek mana yang bertanggung jawab untuk aktivitas tertentu.

E. Sequence Diagram


Sequence diagram menggambarkan interaksi antar objek di dalam dan di sekitar sistem (termasuk pengguna, display , dan sebagainya) berupa message yang digambarkan terhadap waktu. Sequence diagram terdiri atar dimensi vertikal (waktu) dan dimensi horizontal (objek-objek yang terkait). Sequence diagram biasa digunakan untuk menggambarkan skenario atau rangkaian langkah-langkah yang dilakukan sebagai respons dari sebuah event untuk menghasilkan output tertentu. Diawali dari apa yang men- trigger aktivitas tersebut, proses dan perubahan apa saja yang terjadi secara internal dan output apa yang dihasilkan. Masing-masing objek, termasuk aktor, memiliki lifeline vertikal. Message digambarkan sebagai garis berpanah dari satu objek ke objek lainnya. Pada fase desain berikutnya, message akan dipetakan menjadi operasi/metoda dari class. Activation bar menunjukkan lamanya eksekusi sebuah proses, biasanya diawali dengan diterimanya sebuah message.

Untuk objek-objek yang memiliki sifat khusus, standar UML mendefinisikan icon khusus untuk objek boundary, controller dan persistent entity .

F. Collaboration Diagram


Collaboration diagram juga menggambarkan interaksi antar objek seperti sequence diagram , tetapi lebih menekankan pada peran masing-masing objek dan bukan pada waktu penyampaian message . Setiap message memiliki sequence number , di mana message dari level tertinggi memiliki nomor 1. Messages dari level yang sama memiliki prefiks yang sama.

G. Component Diagram


Component diagram menggambarkan struktur dan hubungan antar komponen piranti lunak, termasuk ketergantungan ( dependency ) di antaranya. Komponen piranti lunak adalah modul berisi code , baik berisi source code maupun binary code , baik library maupun executable , baik yang muncul pada compile time, link time , maupun run time . Umumnya komponen terbentuk dari beberapa class dan/atau package , tapi dapat juga dari komponen-komponen yang lebih kecil. Komponen dapat juga berupa interface , yaitu kumpulan layanan yang disediakan sebuah komponen untuk komponen lain.

H. Deployment Diagram


Deployment/physical diagram menggambarkan detail bagaimana komponen di- deploy dalam infrastruktur sistem, di mana komponen akan terletak (pada mesin, server atau piranti keras apa), bagaimana kemampuan jaringan pada lokasi tersebut, spesifikasi server, dan hal-hal lain yang bersifat fisikal Sebuah node adalah server, workstation , atau piranti keras lain yang digunakan untuk men- deploy komponen dalam lingkungan sebenarnya. Hubungan antar node (misalnya TCP/IP) dan requirement dapat juga didefinisikan dalam diagram ini.

Diagram-diagram UML 

Pada UML 2.3 terdiri dari 13 macam diagram yang dikelompokkan dalam 3 kategori.Pembagian kategori dan macam-macam diagram tersebut dapat dilihat pada gambar dibawah.






Diagram UML
Tipe Diagram UML 

Berikut ini penjelasan singkat dari pembagian kategori tersebut.

1. Structure diagrams yaitu kumpulan diagram yang digunakan untuk menggambarkan suatu struktur statis dari sistem yang dimodelkan.

2. Behavior diagrams yaitu kumpulan diagram yang digunakan untuk menggambarkan kelakuan sistem atau rangkaian perubahan yang terjadi pada sebuah sistem.

3. Interaction diagrams yaitu kumpulan diagram yang digunakan untuk menggambarkan interaksi sistem dengan sistem lain maupun interaksi antar subsistem pada suatu sistem.


Tidak ada komentar:

Posting Komentar

- ANALISIS DAN DESAIN SISTEM INFORMASI -   Analisis sistem adalah mendefinisikan kebutuhan-kebutuhan terkait dengan sistem yang akan ...